

DEPARTMENT OF MATHEMATICS Jhargram Baj College JHARGRAM:: 721507

Students' Enrichment Programme

Problem of the Week

(SEM - IV)

Problem Posting Date: 24.03.22

Due Date: 31.03.22

Any One:

1. Show that for any irrational $\alpha \lim_{n\to\infty} \sin n\alpha \pi$ does not exist.

2. Let α be irrational. Show that $A = \{m + n\alpha : m, n \in \mathbb{Z}\}$ is dense in \mathbb{R} .

3. Given a real number α and $x \in (0,1)$, calculate $\lim_{n\to\infty} n^{\alpha} x^n$.

.....

Brief Solution of the Problem Posted on 24.03.22

- 1. If $\lim_{n\to\infty} \sin n\alpha\pi$ exists, then $\lim_{n\to\infty} \sin(n+2)\alpha\pi$ exists. It will imply that $\lim_{n\to\infty} (\sin(n+2)\alpha\pi \sin n\alpha\pi) = 0$. Hence $\lim_{n\to\infty} \cos n\alpha\pi = 0$ Similarly one can show that $\lim_{n\to\infty} \sin n\alpha\pi = 0$. But we know that $\sin^2 n\alpha\pi + \cos^2 n\alpha\pi = 1$ so we arrive at a contradiction.
- We will show that in any interval (p, q) there exists at least one element of A.

Let $\varepsilon = q - p$. We know that $\forall \alpha \in \mathbb{R} \setminus \mathbb{Q} \exists p_n, q_n \in \mathbb{N}$ such that $|\alpha - \frac{p_n}{q_n}| < \frac{1}{q_n^2}$ Since $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ $\lim_{n \to \infty} q_n = \infty$ so $|q_n \alpha - p_n| < \frac{1}{q_n} < \varepsilon$ for almost all *n*. Set $a = |q_n \alpha - p_n|$, $ma \in (p, q), m \in \mathbb{Z}$.

3. $\alpha \in \mathbb{R}$, $x \in (0,1)$. Now $\lim_{n \to \infty} \frac{(n+1)^{\alpha} x^{n+1}}{n^{\alpha} x^n} = \lim_{n \to \infty} x(1+\frac{1}{n})^{\alpha} = x < 1$. Hence the $\lim_{n \to \infty} n^{\alpha} x^n = 0$.