

Problem of the Week

(SEM - IV)

Problem Posting Date: 24.03.22
Due Date: 31.03.22

Any One:

1. Show that for any irrational $\alpha \lim _{n \rightarrow \infty} \sin n \alpha \pi$ does not exist.
2. Let α be irrational. Show that $A=\{m+n \alpha: m, n \in \mathbb{Z}\}$ is dense in \mathbb{R}.
3. Given a real number α and $x \in(0,1)$, calculate $\lim _{n \rightarrow \infty} n^{\alpha} x^{n}$.

Brief Solution of the Problem Posted on 24.03.22

1. If $\lim _{n \rightarrow \infty} \sin n \alpha \pi$ exists, then $\lim _{n \rightarrow \infty} \sin (n+2) \alpha \pi$ exists. It will imply that $\lim _{n \rightarrow \infty}(\sin (n+2) \alpha \pi-\sin n \alpha \pi)=0$. Hence $\lim _{n \rightarrow \infty} \cos n \alpha \pi=0$ Similarly one can show that $\lim _{n \rightarrow \infty} \sin n \alpha \pi=0$. But we know that $\sin ^{2} n \alpha \pi+\cos ^{2} n \alpha \pi=1$ so we arrive at a contradiction.
2. We will show that in any interval (p, q) there exists at least one element of A.

Let $\varepsilon=q-p$. We know that $\forall \alpha \in \mathbb{R} \backslash \mathbb{Q} \exists p_{n}, q_{n} \in \mathbb{N}$ such that $\left|\alpha-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n}^{2}}$ Since $\alpha \in \mathbb{R} \backslash \mathbb{Q} \lim _{n \rightarrow \infty} q_{n}=\infty$ so $\left|q_{n} \alpha-p_{n}\right|<\frac{1}{q_{n}}<\varepsilon$ for almost all n. Set $a=\left|q_{n} \alpha-p_{n}\right|, m a \in(p, q), m \in \mathbb{Z}$.
3. $\alpha \in \mathbb{R}, x \in(0,1)$. Now $\lim _{n \rightarrow \infty} \frac{(n+1)^{\alpha} x^{n+1}}{n^{\alpha} x^{n}}=\lim _{n \rightarrow \infty} x\left(1+\frac{1}{n}\right)^{\alpha}=x<1$. Hence the $\lim _{n \rightarrow \infty} n^{\alpha} x^{n}=0$.

